初中数学教学设计

时间:2024-08-30 15:13:07
初中数学教学设计(15篇)

初中数学教学设计(15篇)

作为一名辛苦耕耘的教育工作者,时常需要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。如何把教学设计做到重点突出呢?以下是小编整理的初中数学教学设计,希望能够帮助到大家。

初中数学教学设计1

一、教学目标:

1、知道一次函数与正比例函数的定义.

2、理解掌握一次函数的图象的特征和相关的性质;

3、弄清一次函数与正比例函数的区别与联系.

4、掌握直线的平移法则简单应用.

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:

1、一次函数与正比例函数的定义:

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数

正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2. 一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

平行的一条直线。

基础训练:

1. 写出一个图象经过点(1,- 3)的函数解析式为: 。

2.直线y = - 2X - 2 不经过第 象限,y随x的增大而。

3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

4.已知正比例函数 y =(3k-1)x,,若y随

x的增大而增大,则k是: 。

5、过点(0,2)且与直线y=3x平行的直线是: 。

6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是: 。

7、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。

8、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解析式。

四、教学反思:

教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的`刺激活动,学生没有保持住持久的紧张状态。

课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问

题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。

初中数学教学设计2

现代教学论研究指出,从本质上讲,学生学习的根本原因是问题。在数学课堂教学中,教师可根据不同的教学内容,围绕不同的教学目标,设计出符合学生实际的教学问题,围绕所设计的问题开展教学活动。这样,在课堂教学环节中,问题该怎样设计?围绕问题该怎样进行教学,才能使教学效率得以提高?这是摆在我们面前急需解决的问题。

本文将结合自己的教学实践,就问题设计的策略及反思等方面谈谈自己的看法。

一、注重问题情境的创设

著名数学家费赖登塔尔认为:“数学源于现实又寓于现实,数学教学应从学生所接触的客观实际中提出问题,然后升华为数学概念、运算法则或数学思想。”这一观念既反映了数学的本质,同时说明了在数学课堂教学中创设问题情境的重要性。比如,在《有理数的加法》一节的教学导入时,我首先出示了一周来本班的积分统计表(表中的得分用正数表示,失分用负数表示,)让学生观察:

星期 一 二 三 四 五 六 合计

积分 +3 -2 -4 -2 +2 +4

然后提出问题:“谁能帮我们班算出这一周的总积分呢?”结果我发现大多数同学能用“抵消”的方法统计出这一周本班的总积分。然后我出了一道算式题:“(+3)+(-2)+(-4)+(-2)=?”发现学生不知道该怎样算。当学生产生这样的认知冲突时我便引入了本节课要学习的内容,最后我用表中的数据分成了几种类型,如正数加正数、负数加负数、正数加负数等,展开新知学习,教学效果较以前有明显改观。

本节课成功之处在于:(1)导入的情境问题贴近学生的现实,调动了学生的积极性。(2)情境问题为后面的教学埋下了伏笔,引发了学生的认知冲突。当然,情境问题的创设不当,会直接影响教学。比如,在《函数》一节的教学时,我用游乐园中的摩天轮引入,当我提出问题:“同学们,当你坐在摩天轮上,随着时间的变化,你离开地面的'高度是如何变化的?”我发现学生几乎没有反应,只是偶尔听到:“摩天轮?”“很危险……”本来是一个很典型的函数问题,只因为农村学生对该情境的认识模糊,一时没有进入到虚拟情境中来,导致课堂开端出现“僵局”,也影响了后面的教学工作的胜利开展。

2、教学重点、难点处的问题设计

初中数学课堂教学中重点与难点的处理将直接影响教学效果。通过设计好的问题串可以强化重点与突破难点。例如,《结识抛物线》一节的教学重点就是做二次函数y=x2的图像并根据图像认识和理解函数的性质。而作图过程又是一个难点问题,要从所画的图像中发现并归纳性质,首先得画出较准确的函数图像。在学生画图像的过程中,我抓住学生的几种错误画法提出了三个问题让学生讨论交流:(1)根据你画的图像,给自变量x任取一个值,函数y有唯一的值与它对应吗?(2)自变量x的范围是什么?(3)在0

3、例题或课堂练习中的问题设计

例题教学具有及 ……此处隐藏19556个字……隶属关系、区别与联系,反映了平行四边形的本质属性。同时,它既是平行四边形的判定,又可以作为平行四边形的一个性质。

关于平行四边形边、角的性质,“平行四边形的对边相等”相对于定义中的“两组对边分别平行”,是由位置关系向数量关系的一种延伸;“平行四边形的对角相等”相对于“两组对边分别平行”,是由“相邻的'角互补”产生的思维的一种深化。同时,两条性质的探究,经历的是“感知、猜想、验证、概括、证明”的认知过程;两条性质的研究,先从边分析,再从角分析,再到下一节课的从对角线分析,提供的是研究几何图形性质的一般思路;两条性质的证明,渗透的是将四边形问题转化为三角形问题的一种转化思想,而添加对角线,介绍的是将四边形问题转化为三角形问题的一种常用的转化手段。

在本章的后续学习中,对于几种特殊的四边形,其定义均采用的是内涵定义法,并且矩形和菱形的定义,均以平行四边形作为种概念,所以平行四边形的概念作为“核心概念”当之无愧。关于平行四边形的性质,也是后续学习矩形、菱形、正方形等知识的基础,这些特殊平行四边形的性质,都是在平行四边形性质基础上扩充的,它们的探索方法,也都与平行四边形性质的探索方法一脉相承,因此,平行四边形的性质,在后续的学习中,也是处于核心地位。

教学重点:平行四边形的概念和性质。

二、目标和目标解析

(1)教学目标:

①掌握平行四边形的概念及性质。

②学会用分析法、综合法解决问题。

③体会特殊与一般的辩证关系。

④逐步养成良好的个性思维品质。

(2)目标解析:

①使学生掌握平行四边形的概念,掌握平行四边形的对边相等,对角相等的性质,会根据概念或性质进行有关的计算和证明。

②通过有关的证明及应用,教给学生一些基本的数学思想方法。使学生逐步学会分别从题设或结论出发,寻求论证思路,学会用综合法证明问题,从而提高学生分析问题解决问题的能力。

③通过四边形与平行四边形的概念之间和性质之间的联系与区别,使学生认识特殊与一般的辩证关系,个性与共性之间的关系等。使学生体会到事物之间总是互相联系又相互区别的,进一步培养辩证唯物主义观点。

④通过对平行四边形性质的探究,使学生经历观察、分析、猜想、验证、归纳、概括的认知过程,培养学生良好的个性思维品质。

初中数学教学设计15

一、学情分析

八年级学生具有强烈的好胜心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理

二、教材分析

这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

三、教学目标设计

知识与技能

探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用

过程与方法

(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的'数学过程,并体会数形结合和从特殊到一般的思想方法。

情感态度与价值

(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

四、教学重点难点

教学重点

探索和证明勾股定理 ·教学难点

用拼图的方法证明勾股定理

五、教学方法

(学法)“引导探索法”

(自主探究,合作学习,采用小组合作的方法。

六、教具准备

课件、三角板

七、教学过程设计

教学环节1

教学过程:创设情境探索新知 教师活动:出示第24届国际数学家大会的会徽的图案向学生提问

(1) 你见过这个图案吗?

(2) 你听说过“勾股定理”吗?

学生活动:学生思考回答

设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。

教学环节2 教学过程:实验操作获取新知归纳验证完善新知

教师活动:出示课件,引导学生探索

学生活动:猜想实验合作交流画图测量拼图验证

设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望。给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。

教学环节3 教学过程:解决问题应用新知

教师活动:出示例题和练习

学生活动:交流合作,解决问题

设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识。

教学环节4 教学内容:课堂小结巩固新知布置作业

教师活动:引导学生小结

学生活动:讨论交流、自由发言

设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。

通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导。

八、板书设计

勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么 a2+b2=c2。

九、习题拓展

如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。

(1)求梯子上端A到墙的底端B的距离AB。

(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?

十、作业设计

1。收集有关勾股定理的证明方法, 下节课展示、交流。

2。做一棵奇妙的勾股树(选做)

《初中数学教学设计(15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式