小数的意义教学设计

时间:2024-08-30 15:13:34
小数的意义教学设计20篇

小数的意义教学设计20篇

作为一名无私奉献的老师,就难以避免地要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么优秀的教学设计是什么样的呢?以下是小编整理的小数的意义教学设计,欢迎大家分享。

小数的意义教学设计1

一、教学目的:

1、在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。

2、在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。

3、在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。

二、教学重难点:

1、理解小数的意义,理解小数的计数单位及它们间的进率。

2、理解小数的计数单位及它们间的进率。

三、教学准备:

米尺、表格纸、多媒体课件等。

四、教学过程

(一)创设情境,直入新课

教师:1.同学们在前面的学习过程中已经学习了长度单位,还会用工具测量物体的长度,估一估,课桌面的长度能有多少?

2.大家估计得对不对呢?让我们一起用直尺来验证一下。

学生:实际测量。

教师:谁愿意把你测量的结果告诉大家?

学生:汇报预设,学生1:我测量课桌面的长度是120厘米。学生2:我测量课桌面的长度是1米2分米。……

教师:课桌的长度如果以米为单位就是1.2米。(1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。(2)认识小数吗?在哪儿见过小数?(3)出示课件超市的商品价格,书店的书本价格。今天我们一起学习小数的意义。

(设计意图:联系生活实际提出问题,让学生动手操作,在进行测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必然性。)

(二)实践入手,探究意义

1.认识一位小数。

教师:各小组观察米尺,把1米平均分成10份,每份是多长?

学生:1分米。

教师:把1分米改写成用“米”做单位的分数怎么表示?说一说你是怎么想的?

学生:交流想法。十分之一米

教师引导学生回答:1分米,也就是十分之一米,用小数表示就是0.1米。

教师:3分米,7分米改写成用“米”作单位的分数应该怎样表示呢?小数呢?请同学们试着写一写。学生独立完成,教师巡视。交流分享学生的思考过程。

教师:出示课件:1、线段平均分成10份,取3份,用小数表示。2、正方形平均分成10份取8份,用小数表示。3、分母是10的分数对应的小数。仔细观察白板,你发现了什么?

学生:回答。

教师小结:像这样,小数点的.右面有1个数字,这样的小数,就称为一位小数。也就是说,分母是10的分数,可以用一位小数表示。

2.认识两位小数。

教师:我们都已经知道了一位小数表示十分之几,猜一猜:两位小数可能与什么样的分数有关?1厘米写成用“米”作单位的分数应该怎么表示?小数呢?4厘米呢?8厘米呢?

学生:先独立完成,再合作交流。

教师:观察每组中的分数和小数,说一说你发现了什么?

学生:分数的分母都是100。学生:小数点的右面都有2个数字。教师小结:同学们观察得都非常正确。类似刚刚学习的一位小数,像这样,小数点的右面有2个数字的小数就称为两位小数。也就是说,分母是100的分数,可以用两位小数表示。

教师:出示课件:1、把正方形平均分成100份取35份,用分数和小数表示。

设计意图:引导学生根据一位小数表示十分之几,推测出两位小数和什么样的小数有关,有意识地促进迁移,体验成功乐趣,培养学生的学习兴趣和信心。

3.小数的意义。

教师:结合我们刚才对一位小数和两位小数的认识,自选两位以上的小数进行研究,完成表格。

学生:先独立研究,再汇报交流结果,教师根据学生回答适时板书。教师:通过你的研究,你发现了什么?

学生:我发现分母是1000的分数可以写成三位小数。比如:把1米平均分成1000份,这样的一份就是1毫米,也就是千分之一米,写成小数就是0.001米。

学生:三位小数就表示千分之几。

教师:其他同学还有谁也研究了三位小数的意义?谁愿意也来说一说?学生:我选择的小数是0.023,也是一个三位小数,可用分数表示为千分之二十三。

教师:说得非常好!一位小数表示十分之几,两位小数表示百分之几,三位小数就表示千分之几。那么四位小数表示什么?五位小数呢?学生:四位小数表示万分之几,五位小数表示十万分之几。结合板书,请同学们仔细观察、回忆一下我们刚才的探讨过程,和同伴交流一下,你都发现了什么?

学生:我认为分母是10、100、1000、10000等的分数可以用小数来表示。

学生:我知道了十分之几可以写成一位小数,百分之几可以写成两位小数,千分之几可以写成三位小数……学生3:也就是说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

教师小结:分母是10、100、1000……这样的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

4.认识小数的计数单位。

教师:大家都知道分数中,十分之几的计数单位是十分之一,百分之几的计数单位是百分之一,千分之几的计数单位是千分之一。请同学们想一想小数的计数单位分别是多少呢?学生:交流。

教师:根据学生汇报归纳整理:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1,0.01,0.001……

5、小数相邻计数单位之间的进率

教师:引导学生1分米=0.1米。1厘米=0.01米。1分米=10厘米,那么0.1米=(10个)0.01米,0.1=(10个)0.01.……得出:每相邻的两个计数单位之间的进率是十。

(设计意图:引导学生从“一位小数表示十分之几”“两位小数表示百分之几”的直观认识,按循序渐进的认知规律,先讲解,接着放手让学生独立探究三位小数、四位小数、五位小数……表示的意义,最后抽象概括出小数的意义,总结小数相邻计数单位之间的进率是十。锻炼了学生的能力,破解了重难点,。)

(三)巩固应用,强化认知

1.第33页做一做。

2.第36页练习九第1题。

3.课件:填空:0.7里面有7个();再增加()个0.1就等于1。0.23里面有 ……此处隐藏33778个字……的意义是本单元教学的重点。

学生分析:

这一部分内容学生在三年级初步认识小数时其实已经有了学习的基础。学生有以元为单位的小数表示金额,以米为单位的小数表示长度的经验。如果本节课再把大量的时间放在这一方面,无异于原地转圈。对于五年的学生来讲,有了一定的学习能力,对数字语言、文字语言以及图形符号语言有了一定程度的认识和理解。所以,课前的预习,五年级孩子是可以胜任的。所以教师要充分发挥学生自主探索的能力,让学生自主运用已有的经验理解小数的意义,从而实现感性认识到理性认识的飞跃。

设计意图:

本节课是一次校级教研课,在第一次试教时按照例题教学,逐步去理解小数的意义。实施下来发现,学生思维就局限在这些单位换算中,而对小数意义的理解并不到位。于是备课组老师就讨论对于这样的概念课怎样才能达到高效呢?最后商量一致同意尝试学生先学后教,由学定教的教学方式,将本节课的设计分成三大板块。

(1)前置学习,初步感悟。课前通过引导题,让学生自学例1、例2,在常用的价钱和长度单位换算之间,初步感悟分数与小数的联系。同时通过检测题了解学生是否真正理解它们之间的换算,理解分母是10、100、1000……的分数可以用一位小数、两位小数、三位小数……表示。

(2)课中操作,沟通联系。小数的意义是在分数意义的基础上建立起来的。这符合认知建构的理论观点:学习者对新知识的理解程度与他们内在的认知结构息息相关。布鲁纳说得更清楚:“获得的知识如果没有完整的结构把它们连在一起,那是一种多半会遗忘的知识。”学习一个概念,需要在心理上组织起适当的认知结构,并使之成为个人内部知识网络的一部分。沟通小数与十进分数的内在联系,是引导学生理解小数意义的关键。怎样让学生主动建构小数与十进分数之间的联系?我们借鉴了特级教师朱国荣老师的设计。用一张正方形纸表示整数“1”,让学生根据自己的理解,表示0.1的大小,在此基础上认识0.9、0.2、0.8……从而理解1里面有10个0.1.继续拓展,认识两位小数、三位小数……

(3)分层练习,实质理解。第一,基本练习,对口令;第二,看图写小数;第三,结合数轴找小数。这三组练习题,层层递进,检测学生能否从本质上真正理解小数的意义。

实施过程

一、前置学习,初步感悟。

1.揭题:今天这节课,我们学习新的一单元,一起读一读。在三年级我们已经初步认识了小数。今天我们重点来研究小数的`意义。

2.课前大家对今天学习的内容已经进行了预习,小组交流,把你的错误向小组里的同学请教一下。(自学学习材料附后)

3.全班汇报:

第一层次:角改写成元作单位可以用一位小数表示,分改写成元作单位可以用两位小数表示。

第二层次:分米改写成米作单位就是十分之几米,也可以写成一位小数,厘米改写成米作单位就是百分之几米,也可以写成两位小数,毫米写成米作单位就是千分之几米,也可以写成三位小数。

二、课中操作,沟通联系。

1.理解一位小数的意义

(1).刚才我们通过课前研究,初步感知了小数和分数的联系,那你能根据自己的理解说一说0.1的意义是什么吗?

(2).那么老师这里有一张正方形纸,如果把这张正方形的纸看作1,怎么在这张纸上表示0.1的大小。

拿出正方形纸,分一分,涂一涂表示0.1的大小。

展示交流,看看这些同学的作品,发表你的意见。

那谁能很自信地确定你表示的是正确的?介绍你的想法。还有不一样的吗?

虽然形状不一样,但所表示的都是把一个正方形平均分成10份,涂了其中的一份。

(3).课件演示,这样表示0.1吗?要表示0.1还需要涂出一份。再说一说0.1表示什么意义。

(4).仔细看,你除了看到0.1还看到那个小数?你是怎么看到0.9的?写成分数是什么?0.9和0.1合起来是多少?1里面有几个0.1。

(5).这里你能看到哪2个小数,写成分数是多少。合在一起是几?

(6).把1平均分成十份,我们认识了0.1、0.9、0.2、0.8外还可以表示那些小数。

这些小数都是一位小数,一位小数表示什么意义呢?

把1平均分成10份,表示其中的几份,也就是表示十分之几。

2.理解两位小数的意义

(1).那0.01的意义是什么呢?

(2).如果还是把这张正方形纸看成1,要在这张正方形纸上表示0.01,你准备怎么表示。

把这张正方形纸平均分成100份,涂其中的1份表示0.01。

(3).课件演示,0.01可以表示哪个分数。仔细观察你除了看到0.01,你还能看到那个小数。

0.99写成分数是多少?0.99里有几个0.01。0.01和0.99合在一起是多少。1里有多少个0.01

(4).课件出示,你看到哪2个小数,分数是什么?

0.28和0.72合在一起是多少。

这些小数都是两位小数,两位小数表示什么意义。

把1平均分成100份,取其中的几份,也就是表示百分之几。

3.理解三位小数的意义

(1).照这样看三位小数表示?千分之几。

(2).三位小数最小的是谁?0.001表示什么意义。写成分数是什么?你能写一个最大的三位小数吗?0.999表示什么意义。0.001和0.999合在一起是多少。1里面有多少个0.001。

0.012写成分数是多少?写成小数是多少?

4.拓展四位小数、五位小数

(1).那四位小数表示什么呢?0.0123表示哪个分数。

(2).五位小数表示什么意义?写成小数是什么?

5.概括小数的意义

那什么是小数的意义呢?

引导学生归纳:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

三、分层练习,实质理解。

1.对口令

看来大家对小数的意义都已经基本掌握了,那我们一起来玩一个游戏,看谁学得扎实。

规则:老师出示小数,请你快速说出分数,老师出示分数,请你快速说出小数。

结合有单位的题目,0.80元、厘米、0.006米说一说表示的意义。

2.写小数

刚才我们在一张平面的正方形中找到了小数,看,在这个正方体中,涂色的部分能用哪个小数表示呢?

这个图形又可以用哪个小数表示?如果要表示2.43怎么办?

3.数轴上得小数

看、这是一条数轴,这两个点可以用哪个小数表示。

把数轴延伸,这两个点可以用哪个小数表示。2.35在哪里?从0向左看你还能找到哪些数。

4.通过本节课的学习你有什么收获?

虽然我们感觉掌握的还不错,但是伟大的数学家高斯曾说过“给我最大快乐的,不是已懂得的知识,而是不断的学习。”希望大家课后继续研究小数的其他知识

《小数的意义教学设计20篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式